Заголовок:
Комментарий:
Готово, можно копировать.
РЕШУ ЦТ — математика ЦЭ
Вариант № 668
1.  
i

Среди вы­ра­же­ний (−1)4; 8 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка ; 40; (0,4)−1;  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ука­жи­те то, зна­че­ние ко­то­ро­го равно 4.

1) (−1)4
2) 8 в сте­пе­ни левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка
3) 40
4) (0,4)−1
5)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
2.  
i

В тре­уголь­ни­ке ABC из­вест­но, что \angle A = 40 гра­ду­сов,\angle B = 100 гра­ду­сов. Ука­жи­те номер вер­но­го утвер­жде­ния для сто­рон тре­уголь­ни­ка.

1) AB < BC < AC
2) BC < AB < AC
3) AB > BC > AC
4) AB > AC > BC
5) AB = BC < AC
3.  
i

На ри­сун­ке изоб­ра­жен гра­фик дви­же­ния ав­то­мо­би­ля из пунк­та O в пункт C. Ско­рость дви­же­ния ав­то­мо­би­ля на участ­ке BC (в км/ч) равна:

1) 26 км/ч
2)  целая часть: 43, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3 км/ч
3) 78 км/ч
4) 104 км/ч
5) 60 км/ч
4.  
i

Опре­де­ли­те, на сколь­ко не­из­вест­ное сла­га­е­мое мень­ше суммы, если из­вест­но, что x + 20  =  80.

1) 80
2) 20
3) 60
4) 40
5) 100
5.  
i

Если 10 в квад­ра­те умно­жить на альфа =741,63287, то зна­че­ние α с точ­но­стью до сотых равно:

1) 74,16
2) 7,42
3) 7,41
4) 74163,29
5) 7416,33
6.  
i

Ука­жи­те но­ме­ра функ­ций, для ко­то­рых зна­че­ние ар­гу­мен­та, рав­ное −8, яв­ля­ет­ся нулем функ­ции.

1) f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в квад­ра­те минус 9 x плюс 8
2) f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 11 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 9 пра­вая круг­лая скоб­ка
3) f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x минус 8
4) f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 8 конец ар­гу­мен­та
5) f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =x в квад­ра­те минус 64
7.  
i

Ве­ло­си­пе­дист за 6 ч про­ехал 58 км. За какое время (в ми­ну­тах) ве­ло­си­пе­дист пре­одо­ле­ет в пол­то­ра раза боль­ший путь, если будет дви­гать­ся с той же ско­ро­стью?

1) 450 мин
2) 270 мин
3) 420 мин
4) 600 мин
5) 540 мин
8.  
i

Най­ди­те сумму всех целых зна­че­ний функ­ции y  =  f(x), за­дан­ной гра­фи­ком на про­ме­жут­ке (-5; 5) (см.рис.).

1) 12
2) 14
3) 7
4) 10
5) 11
9.  
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния  дробь: чис­ли­тель: a в квад­ра­те плюс 5a, зна­ме­на­тель: a плюс 3 конец дроби плюс дробь: чис­ли­тель: 6a, зна­ме­на­тель: a в квад­ра­те плюс 3a конец дроби имеет вид:

1) a минус 2
2)  дробь: чис­ли­тель: левая круг­лая скоб­ка a минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a минус 3 пра­вая круг­лая скоб­ка , зна­ме­на­тель: a плюс 3 конец дроби
3)  дробь: чис­ли­тель: a в квад­ра­те плюс 11a, зна­ме­на­тель: a в квад­ра­те плюс 4a плюс 3 конец дроби
4)  дробь: чис­ли­тель: a в квад­ра­те плюс 8a плюс 33, зна­ме­на­тель: 3 левая круг­лая скоб­ка a плюс 3 пра­вая круг­лая скоб­ка конец дроби
5) a плюс 2
10.  
i

Ре­ше­ни­ем си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний левая круг­лая скоб­ка 2,5x минус 1 пра­вая круг­лая скоб­ка x плюс 0,1 боль­ше 0,22x минус 1\leqslant13 минус 6x конец си­сте­мы . яв­ля­ет­ся:

1)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;0,5 пра­вая квад­рат­ная скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;2 пра­вая квад­рат­ная скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;0,2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0,2;0,5 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка минус бес­ко­неч­ность ;0,2 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0,2;0,5 пра­вая квад­рат­ная скоб­ка
5)  левая круг­лая скоб­ка 0,2;0,5 пра­вая круг­лая скоб­ка
11.  
i

На кру­го­вой диа­грам­ме пред­став­ле­на ин­фор­ма­ция о про­да­же 200 кг ово­щей в те­че­ние дня. Для на­ча­ла каж­до­го из пред­ло­же­ний А  — В под­бе­ри­те его окон­ча­ние 1  — 6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

На­ча­ло пред­ло­же­ния

А)  Масса (в ки­ло­грам­мах) про­дан­ной ка­пу­сты равна ...

Б)  От­но­ше­ние, вы­ра­жен­ное в про­цен­тах, ко­то­рое по­ка­зы­ва­ет, на сколь­ко масса про­дан­но­го кар­то­фе­ля мень­ше массы про­дан­ных по­ми­до­ров, равно ...

В)  От­но­ше­ние, вы­ра­жен­ное в про­цен­тах, ко­то­рое по­ка­зы­ва­ет, на сколь­ко масса про­дан­ной свек­лы боль­ше массы про­дан­но­го лука, равно ...

Окон­ча­ние пред­ло­же­ния

1)   25

2)  40

3)  4

4)  125

5)  38

6)  19

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.

12.  
i

Най­ди­те наи­боль­шее целое ре­ше­ние не­ра­вен­ства 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 17 пра­вая круг­лая скоб­ка умно­жить на 5 в сте­пе­ни левая круг­лая скоб­ка минус x минус 16 пра­вая круг­лая скоб­ка боль­ше 1,08.

13.  
i

Пусть (x1; y1), (x2; y2)  — ре­ше­ния си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x в квад­ра­те плюс y в квад­ра­те =3xy плюс 1,x минус y=2. конец си­сте­мы .

Най­ди­те зна­че­ние вы­ра­же­ния x1x2 + y1y2.

14.  
i

В рав­но­бед­рен­ную тра­пе­цию, пло­щадь ко­то­рой равна 115, впи­са­на окруж­ность ра­ди­у­са 5. Най­ди­те пе­ри­метр тра­пе­ции.

15.  
i

Най­ди­те про­из­ве­де­ние наи­мень­ше­го корня (в гра­ду­сах) на ко­ли­че­ство раз­лич­ных кор­ней урав­не­ния  синус 5x= ко­си­нус 65 гра­ду­сов на про­ме­жут­ке (−90°; 90°).

16.  
i

Пло­щадь пря­мо­уголь­ни­ка ABCD равна 20. Точки M, N, P, Q  — се­ре­ди­ны его сто­рон. Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка между пря­мы­ми AN, BP, CQ, DM.

17.  
i

Най­ди­те про­из­ве­де­ние суммы кор­ней урав­не­ния 4 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка минус 2 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка =2 в сте­пе­ни левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка минус 2 в сте­пе­ни 6 на их ко­ли­че­ство.

18.  
i

Най­ди­те про­из­ве­де­ние кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния 5 ко­рень 6 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 14 конец ар­гу­мен­та плюс ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 14 конец ар­гу­мен­та =14.

19.  
i

Най­ди­те пло­щадь пол­ной по­верх­но­сти пря­мой тре­уголь­ной приз­мы, опи­сан­ной около шара, если пло­щадь ос­но­ва­ния приз­мы равна 7,5.

20.  
i

Куб впи­сан в пра­виль­ную че­ты­рех­уголь­ную пи­ра­ми­ду так, что че­ты­ре его вер­ши­ны на­хо­дят­ся на бо­ко­вых реб­рах пи­ра­ми­ды, а че­ты­ре дру­гие вер­ши­ны  — на ее ос­но­ва­нии. Длина сто­ро­ны ос­но­ва­ния пи­ра­ми­ды равна 1, вы­со­та пи­ра­ми­ды  — 3. Най­ди­те пло­щадь S по­верх­но­сти куба. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 8S.

21.  
i

Най­ди­те про­из­ве­де­ние точек ми­ни­му­ма функ­ции  f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: x в сте­пе­ни 4 , зна­ме­на­тель: 4 конец дроби плюс x в кубе минус 14 x в квад­ра­те .

22.  
i

На сто­ро­не AB па­рал­ле­ло­грам­ма ABCD от­ме­че­на точка O так, что AB=3AO. К плос­ко­сти ABCD из точки O вос­ста­нов­лен пер­пен­ди­ку­ляр SO дли­ной 8. Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 89 конец ар­гу­мен­та ко­си­нус альфа , где  альфа   — ли­ней­ный угол дву­гран­но­го угла BSCD, если CD = 9,BC = 5 и из­вест­но, что пло­щадь ABCD равна 45.

23.  
i

Ра­ди­ус ос­но­ва­ния ци­лин­дра равен 13. Плос­кость, па­рал­лель­ная оси ци­лин­дра, пе­ре­се­ка­ет ци­линдр по пря­мо­уголь­ни­ку с пло­ща­дью, рав­ной 108. Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: V, зна­ме­на­тель: Пи конец дроби , где V  — объем ци­лин­дра, если рас­сто­я­ние от плос­ко­сти се­че­ния до оси ци­лин­дра равно 2 ко­рень из: на­ча­ло ар­гу­мен­та: 22 конец ар­гу­мен­та .

24.  
i

Рав­но­бед­рен­ная тра­пе­ция с ос­но­ва­ни­я­ми дли­ной 7 и 3 и ост­рым углом 60° вра­ща­ет­ся во­круг пря­мой, со­дер­жа­щей ее бо­ко­вую сто­ро­ну. Най­ди­те объем тела вра­ще­ния V и в ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: V, зна­ме­на­тель: Пи конец дроби .

25.  
i

Най­ди­те суму всех целых ре­ше­ний не­ра­вен­ства  2 в сте­пе­ни левая круг­лая скоб­ка x минус 17 пра­вая круг­лая скоб­ка умно­жить на 7 в сте­пе­ни левая круг­лая скоб­ка минус x плюс 18 пра­вая круг­лая скоб­ка мень­ше ко­рень из: на­ча­ло ар­гу­мен­та: 14 конец ар­гу­мен­та на про­ме­жут­ке (−25; 25).

26.  
i

ABCA1B1C1  — пра­виль­ная тре­уголь­ная приз­ма, все ребра ко­то­рой равны 6. Точки P и K  — се­ре­ди­ны ребер B1C1 и CC1 со­от­вет­ствен­но, M ∈ AA1, A1M : A1A  =  1 : 3 (см. рис.). Най­ди­те уве­ли­чен­ный в 25 раз квад­рат длины от­рез­ка, по ко­то­ро­му плос­кость, про­хо­дя­щая через точки M, K, P, пе­ре­се­ка­ет грань AA1B1B.

27.  
i

Най­ди­те (в гра­ду­сах) сумму раз­лич­ных кор­ней урав­не­ния  синус в квад­ра­те дробь: чис­ли­тель: 3 x, зна­ме­на­тель: 2 конец дроби минус ко­си­нус в квад­ра­те дробь: чис­ли­тель: 3 x, зна­ме­на­тель: 2 конец дроби =1 на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус 365 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка ; минус 45 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка пра­вая квад­рат­ная скоб­ка .

28.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния  3 ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 17 конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 17 конец ар­гу­мен­та =40.

29.  
i

Два крана, ра­бо­тая од­но­вре­мен­но, раз­гру­зи­ли баржу за 9 ч. Если бы по­ло­ви­ну баржи раз­гру­зил пер­вый кран, а затем остав­шу­ю­ся часть  — вто­рой кран, то баржа была бы раз­гру­же­на за 50 ч. За какое время (в часах) пер­вый кран, ра­бо­тая один, раз­гру­зил бы всю баржу, если из­вест­но, что он ра­бо­та­ет мед­лен­нее, чем вто­рой кран?

30.  
i

Ос­но­ва­ни­ем че­ты­рех­уголь­ной пи­ра­ми­ды яв­ля­ет­ся ромб, у ко­то­ро­го ко­си­нус угла равен  дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби и длина сто­ро­ны равна 16. Все бо­ко­вые грани пи­ра­ми­ды на­кло­не­ны к плос­ко­сти ее ос­но­ва­ния под углом α, а вы­со­та пи­ра­ми­ды равна 24. Най­ди­те зна­че­ние вы­ра­же­ния 3 ко­рень из: на­ча­ло ар­гу­мен­та: 7 конец ар­гу­мен­та умно­жить на тан­генс альфа .